Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(19): 28719-28733, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558346

RESUMO

Green hydrogen generation technologies are currently the most pressing worldwide issues, offering promising alternatives to existing fossil fuels that endanger the globe with growing global warming. The current research focuses on the creation of green hydrogen in alkaline electrolytes utilizing a Ni-Co-nano-graphene thin film cathode with a low overvoltage. The recommended conditions for creating the target cathode were studied by electrodepositing a thin Ni-Co-nano-graphene film in a glycinate bath over an iron surface coated with a thin copper interlayer. Using a scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) mapping analysis, the obtained electrode is physically and chemically characterized. These tests confirm that Ni, Co, and nano-graphene are homogeneously dispersed, resulting in a lower electrolysis voltage in green hydrogen generation. Tafel plots obtained to analyze electrode stability revealed that the Ni-Co-nano-graphene cathode was directed to the noble direction, with the lowest corrosion rate. The Ni-Co-nano-graphene generated was used to generate green hydrogen in a 25% KOH solution. For the production of 1 kg of green hydrogen utilizing Ni-Co-nano-graphene electrode, the electrolysis efficiency was 95.6% with a power consumption of 52 kwt h-1, whereas it was 56.212. kwt h-1 for pure nickel thin film cathode and 54. kwt h-1 for nickel cobalt thin film cathode, respectively.


Assuntos
Cobalto , Eletrodos , Grafite , Hidrogênio , Níquel , Grafite/química , Hidrogênio/química , Níquel/química , Cobalto/química , Eletrólise
2.
Environ Sci Pollut Res Int ; 30(9): 24043-24061, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36333636

RESUMO

Nanometric titanium derivatives such as hydroxide and dioxide compounds have a great attention because they are significant industrial material of commercial importance and applications in photocatalyst, semiconductors, and wastewater treatment. The present investigation gives the results of anodic dissolution preparation of titanium hydroxide nanometric particles followed by calcination for complete conversion to nanometric titanium dioxide product. The optimum conditions for the anodic dissolution of titanium metal were pH 4, C.D. 65 mA/cm2, 25 °C, 150 rpm, electrode gap distance 3 cm, and NaCl 3 g/l for electrolysis time 240 min and thermally calcinated at 600 °C for 240 min., to reach complete conversion to anatase titanium dioxide nanopowder of main particles size of 77 nm with major percentage of 70%. Chemical and physical characterizations were carried out for evaluation of the obtained products including transmission electron microscope, EDX, XRD, and the scanning advanced electronic diffraction pattern. Preliminary economic indicators were calculated to show that the capital cost of the plant is $1.613 million, with annual operating cost of $0.915 million which means the required investment is $2.528 million. The operating cost for the production of nanometric anatase TiO2 is $30.5/kg with depreciation excluding the land price.


Assuntos
Eletrólise , Titânio , Titânio/química , Solubilidade , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA